Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Кузнецова Эмили А СТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ Должность: Исполнительный дир««РФГИОНАЛЬНЫЙ ИНСТИТУТ БИЗНЕСА И УПРАВЛЕНИЯ»

Дата подписания: 23.11.2025 16:18:17 Уникальный программный ключ:

01e176f1d70ae109e92d86b7d8f33ec82fbb87d6

Рассмотрено и одобрено на заседании Учебно-Методического совета Протокол № 1 от 23 августа 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

к рабочей программе дисциплины

«Нейронные сети»

Направление подготовки 09.03.03 Прикладная информатика Направленность Прикладная информатика подготовки (профиль) Уровень программы бакалавриат Форма обучения очно-заочная

Фонд оценочных средств текущей и промежуточной аттестации по дисциплине «Нейронные сети»

Фонд оценочных средств является неотъемлемой частью рабочей программы дисциплины и основной образовательной программы.

Фонд оценочных средств представляет собой комплекс учебных заданий, предназначенных для измерения уровня достижений обучающимся установленных результатов обучения, и используется при проведении текущей и промежуточной аттестации (в период зачетно - экзаменационной сессии).

Цель Φ OC — установление соответствия уровня подготовки обучающихся на данном этапе обучения требованиям рабочей программы дисциплины.

Основными задачами ФОС по учебной дисциплине являются:

- контроль достижений целей реализации ОП формирование компетенций;
- контроль процесса приобретения обучающимся необходимых знаний, умений, навыков(владения/опыта деятельности) и уровня сформированности компетенций;
 - оценка достижений обучающегося;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование методов обучения в образовательном процессе.

1 . Планируемые результаты обучения по дисциплине в рамках планируемых результатов освоения основной образовательной программы. Перечень компетенций в процессе освоения образовательной программы.

Дисциплина «Нейронные сети» обеспечивает освоение следующих компетенций с учетом этапа освоения:

Код	
компетенции	Наименование компетенции
11K-10	Способен применять системный подход и математические методы в формализации решения прикладных задач

Раздел/тема	Краткое тематическое содержание /этапы формирования компетенции		Компетен ции
Структурная схема	Понятие нейрона.	О	ПК-10
нейрокомпьютера	Схема нейрокомпьютера.		
Обучение однослойных и	Обучение нейронной сети. Технология	О	ПК-10
специальных нейронных с етей	обучения. Способы представления. Процесса обучения. Алгоритм обучения		
	однослойной нейронной сети. Пример		
	решения задачи классификации на основе		
	нейронной сети.	_	
Обучение многослойных не	Эволюция развития перцептронных алгори	О	ПК-10

линейных нейронных сетей без	тмов обучения.	КР	
обратных связей	Эффективность аппарата нейросетей.	KI	
обранных связей	Модели ассоциативной памяти. Сети		
	Хопфилда. Алгоритм обратного		
	распространения ошибки и его анализ.		
	Трудности алгоритма обратного		
	распространения ошибки Устойчивость		
	сетей Хопфилда.		
Алгоритмы обучения	Применение сети Хопфилда к решению	О	ПК-10
многослойных нелинейных	задач комбинаторной оптимизации. Сети		
нейронных сетей	Хопфилда. Прогнозирование с	P	
1	использованием нейросетей.		
Модели нейронных сетей	Архитектура АПНС сети. Пример	O	ПК-10
	применения АПНС в задачах	740	
	распознавания образов.	КР	
Гибридные системы	Нечеткие нейронные сети. Преимущества	О	ПК-10
	аппарата нечетких нейронных сетей.		
	Нечеткие элементы нейросетевых систем.		
	Нечеткие нейроны.		
Нейроимитаторы	Классификация нейроимитаторов.	О	ПК-10
	Программный комплекс NeuroIterator.		
	Нейропакет Brain Maker		
	3.1Professional.ПакетMatlab		

2 .Cоответствие уровня освоения компетенции планируемым результатам обучения и критериям их оценивания

Код компетенции	Наименование компетенции
ПК-10	Способен применять системный подход и математические методы в формализации
1110-10	решения прикладных задач

Поморожения	Критерии оценивания					
Показатель оценивания	1	2	3	4	5	
	Студент	Студент	Студент	Студент	Студент	
	продемонстр	демонстрирует	демонстрирует	демонстрирует	демонстрирует	
	ировал	небольшое	частичное	значительное	полное знание	
Знает базовые положения	отсутствие	понимание	понимание	знание заданий.	заданий. Все	
фундаментальных разделов	знаний.	заданий. У	заданий.	Все требования,	требования,	
системного анализа и		студента нет	Большинство	предъявляемые к	предъявляемые к	
математики в объеме,		ответа.	требований,	заданию	заданию	
необходимом для обработки			предъявляемы х	выполнены.	выполнены.	
информации и анализа			к заданию			
данных в прикладной			выполнены.			
области; принципы и методы						
проведения исследований в						
области информационных						
систем и технологий;						
техники планирования и						
проведения вычислительного						
эксперимента						

	Студент	Студент	Студент	Студент	Студент
	-	_		демонстрирует	демонстрирует
Умеет формулировать и	ировал	неумения	частичное	значительное	полное умение
доказывать наиболее важные	отсутствие	выполнять	умение	знание заданий.	выполнений
результаты в прикладных	умений.	задания.	выполнений	Все требования,	заданий. Все
областях; применять			заданий.	предъявляемые к	требования,
численные методы для			Большинство	заданию	предъявляемые к
решения прикладных задач;			требований,	выполнены.	заданию
программно реализовать			предъявляемы х		выполнены.
вычислительный			к заданию		
эксперимент посредством			выполнены.		
языков программирования					
или с использованием					
специализированных пакетов					
прикладных программ;					
разрабатывать алгоритмы					
решения конкретных задач.					
	Проявляется	У студента не	В целом	В целом	Успешное и
Владеет навыками	полное или	сформирован ы	успешное, но не	успешное, но	систематическое
постановки задачи;	практически	дисциплинарны	систематическо	содержащее	применение
навыками работы с	полное	e	е применение	отдельные	навыков
библиографическими	отсутствие	компетенции,	навыков	пробелы	
источниками информации;	навыков.	проявляется		применение	
навыками решения		недостаточност		навыков	
поставленных задач в		ь навыков.			
предметной области в рамках					
выбранного профиля.					

3. Фонд оценочных средств и материалы текущего контроля успеваемости обучающихся и промежуточной аттестации по дисциплине

3.1. В ходе реализации дисциплины «Нейронные сети» используются следующие формы текущего контроля успеваемости обучающихся:

опрос, реферат, контрольная работа, и т.д.

- 3.2. Преподаватель при текущем контроле успеваемости, оценивает уровень подготовленности обучающихся к занятию по следующим показателям:
 - устные (письменные) ответы на вопросы преподавателя по теме занятия;
- по сформированности собственных суждений основанных на значимых фактах и практических результатах отраженных в реферате, эссе;
 - аргументированности, актуальности, новизне содержания доклада;
 - по точному выполнению целей и задач контрольной работы.

Детализация баллов и критерии оценки текущего контроля успеваемости утверждается на заседании кафедры.

3.2.1. Вопросы для подготовки к опросу по всем изучаемым тема дисциплины:

- 1. Структура нейрокомпьютера
- 2. Классы задач, решаемых нейронными сетями
- 3. Основные отличия нейрокомпьютеров от ЭВМ предыдущих поколений
- 4. Нейросетевые методы обработки информации и средства их программно- аппаратной поддержки
 - 5. Модель технического нейрона. Архитектура нейронных сетей
 - 6. Простановка и возможные пути решения задач и обучения нейронных сетей
 - 7. Обучение нейронных сетей как многокритериальная задача оптимизации

- 8. Сравнительный анализ алгоритмов обучения нейронных сетей
- 9. Модели нейронных сетей для реализации отображений. Теорема Колмогорова
- 10. Алгоритм настройки параметров нейронных сетей
- 11. Алгоритм с настройкой передаточных только синаптических весов и смещений. Настройка передаточных функций
- 12. Настройка числа нейронов в скрытых слоях многослойных нейронных сетей в процессе обучения. Алгоритмы сокращения. Конструктивные алгоритмы
 - 13. Многослойнаянейроннаясетьиалгоритмобратногораспространенияошибки
 - 14. Полносвязная нейронная сеть без скрытых нейронов
 - 15. Модель однослойного персептрона
 - 16. Сеть Хемминга
 - 17. Сеть Хопфилда.
 - 18. Двунаправленная ассоциативная память.
 - 19. Моделитеорииадаптивногорезонанса. Самоорганизующиеся карты Кохонена
 - 20. Сеть встречного распространения. Сеть Гроссберга
 - 21. Нечеткие нейронные сети
 - 22. Алгоритмы обучения нечетких нейронных сетей
 - 23. Структуры гибридных систем
 - 24. Радикально-базисные сети
 - 25. Сети регрессии
 - 26. Вероятностные нейронные сети
 - 27. Градиентные методы обучения
 - 28. Неградиентные методы обучения
 - 29. Нечеткие нейронные сети с генетической настройкой.
 - 30. Нейроимитаторы

Устный (письменный) опрос проводится в течение установленного времени преподавателем. Опрашиваются все обучающиеся группы. За опрос выставляется оценка до 10 баллов. Набранные баллы являются рейтинг-баллами.

Рейтинг-	Аттестационная оценка обучающегося по дисциплине учебного плана в
баллы	национальной системе оценивания
8-10	онрилто
6-7	хорошо
4-5	удовлетворительно
0-3	неудовлетворительно

При оценивании учитывается:

- 1. Целостность, правильность и полнота ответов
- 2. В ответе приводятся примеры из практики, даты, Ф.И.О. авторов
- 3. Применяются профессиональные термины и определения

Процедура оценки опроса:

- 1. Если ответ удовлетворяет 3-м условиям 8-10 баллов.
- 2. Если ответ удовлетворяет 2-м условиям 6-7 баллов.
- 3. Если ответ удовлетворяет 1-муусловию 4-5 баллов.
- 4. Если ответ не удовлетворяет ни одному условию 0-3

3.2.2. Темы рефератов:

Реферат — форма научно-исследовательской деятельности, направленная на развитие научного мышления, на формирование познавательной деятельности по дисциплине через

комплекс взаимосвязанных методов исследования, на самообразование и творческую деятельность. Используя ЭИОС ММА, включающей в себя электронные информационные ресурсы, электронные образовательные ресурсы, базы данных, ЭБС, выделять значимые и актуальные положения, противоположные мнения с обоснованием собственной точки зрения.

Общий список тем рефератов

- 1. Биологический и искусственный нейрон.
- 2. Основные функции активации нейронов. Преимущества нейронных сетей.
- 3. Сопоставление традиционных ЭВМ и нейрокомпьютеров.
- 4. Классификации нейронных сетей, области применения и решаемые задачи.
- 5. Основные направления развития нейрокомпьютинга.
- 6. Персептрон Розенблата.
- 7. Алгоритм обучения персептрона и правило Хебба.
- 8. Теорема о сходимости алгоритма обучения персептрона для линейно-разделимых множеств. Проблема исключающего «или».
 - 9. Многослойный персептрон. Представление булевых функций.
- 10. Преодоление ограничения линейной разделимости и решение проблемы исключающего «или».
 - 11. Нейронные сети как универсальные аппроксиматоры.
- 12. Общая идея градиентных методов решения задач безусловной оптимизации. Метод наискорейшего спуска.
- 13. Алгоритм обратного распространения ошибки. Достоинства и недостатки алгоритма. Понятие паралича сети и причины его возникновения.
- 14. Проблема овражности поверхности функционала ошибки и её частичное преодоление с помощью введения момента (инерциальной поправки).
 - 15. Физический смысл момента. Обобщенное дельта-правило.
- 16. Эвристические приемы улучшения сходимости и качества градиентного обучения (нормализация, выбор функции активации, выбор начальных значений весов, порядок предъявления обучающих примеров, выбор величины шага, сокращение числа весов, выбивание из локальных минимумов, проблема переобучения и разделение выборки).
 - 17. Методы упрощения структуры нейронной сети. Общие принципы обучения.
- 18. Аддитивная и мультипликативная модели временных рядов. Компоненты временного ряда.
 - 19. Исследование временных рядов на основе коррелограммы.
- 20. Специфика прогнозирования финансовых временных рядов (выбор входных сигналов, метод искусственных примеров, выбор функционала ошибки и оценка величины капитала игрока).
 - 21. Задачи, решаемые без учителя. Идея метода главных компонент.
- 22. Задача кластеризации данных. Основные метрики для количественных и неколичественных переменных.
 - 23. Сети Кохонена, правила жесткой, справедливой и мягкой конкуренции.
 - 24. Алгоритм обучения. Задача квантования данных.
 - 25. Задача многомерной визуализации и самоорганизующиеся карты Кохонена.

Критерии оценки:

- 1. Выполнение задания в срок. Сформулированы предмет анализа или исходные тезисы.
- 2. Отражены суждения и оценки, основанные на значимых фактах и практических результатах.
 - 3. Использованы электронные информационные ресурсы, базы данных, ЭБС

Процедура оценки реферата, эссе:

- 1. Если ответ удовлетворяет 3-м условиям 18-20 баллов.
- 2. Если ответ удовлетворяет 2-м условиям 15-17 баллов.
- 3. Если ответ удовлетворяет 1-му условию 10-14 баллов.
- 4. Если ответ не удовлетворяет ни одному условию 1-9

Рейтинг- баллы	Аттестационная оценка обучающегося по дисциплине учебного плана в национальной системе оценивания
18-20	Отлично
15-17	Хорошо
10-14	Удовлетворительно
1-9	Неудовлетворительно

3.2.4. Тематика контрольных работ

Контрольная работа предполагает выработку умений обучающимся показать глубокое знание теории предмета; на основе материала, установить и проанализировать следственно-логические связи и продемонстрировать навыки практического применения теоретической информации изучаемой дисциплины. Написание контрольной работы требует формулирование цели и задачи всей работы, заключение или выводы следуют из поставленных целей и задач.

Примерная тематика контрольных работ:

Контрольная работа №1 «Простая нейросеть на языке Python»

Цель работы: изучение модели нейрона персептрона и архитектуры персептронной однослойной нейронной сети;

Задание: Написать программу реализующую функционал искусственного нейрона.

Вопросы

- 1. +то такое искусственный нейрон?
- 2. Веса и связи.
- 3. Метод обратного распространения ошибок.
- 4. Функция Активации.

Контрольная работа №2 «Многослойная нейросеть на Python (keras) для распознавания изображений»

Цель работы: Изучить применение многослойной нейронной сети для распознавания изображений.

Задание: С помощью библиотеки keras и обучающих данных написать программу, способную классифицировать объекты на рисунке.

Вопросы

- 1. Принцип построения многослойной сети. Входной и выходной слой.
- 2. Нормировка данных. Как подготовить данные для нейросети.
- 3. Скрытые слои нейросети принципы их применения.
- 4. Обучение нейросети. Обучающее и тестовое множество.
- 5. Реализация нейросети с помощью библиотеки keras.

Контрольная работа №3 «Применение нейросети для предсказания рыночных котировок»

Цель работы: Изучить применение многослойной нейронной сети для предсказания временных процессов, в том числе и в области экономики и финансов.

Задание: С помощью библиотеки keras и обучающих данных написать программу,

способную предсказать будущий курс валюты на рынке.

Вопросы

- 1. Принцип построения многослойной сети. Входной и выходной слой.
- 2. Применение нейросети для временных последовательностей. Развертка во времени и нормировка
 - 3. Оценка качества модели.
 - 4. Обучение нейросети. Обучающее и тестовое множество.
 - 5. Реализация нейросети с помощью библиотеки keras.

За контрольную работу выставляется оценка до 20 баллов. Набранные баллы являются рейтинг-баллами.

Критерии оценки контрольной работы:

- 1. Выполнение задания в срок. Соответствие содержания заявленной теме;
- 2. Самостоятельность в выполнении работы, точность и полнота изложенного материала.
- 3. Логическое изложение материала. Соблюдение требований к оформлению работы.

Процедура оценки контрольной работы:

- 1. Если ответ удовлетворяет 3-м условиям 18-20 баллов.
- **2.** Если ответ удовлетворяет 2-м условиям 15-17 баллов.
- **3.** Если ответ удовлетворяет 1-му условию 10-14 баллов.
- **4.** Если ответ не удовлетворяет ни одному условию -1-9 баллов.

Рейтинг-баллы	Аттестационная оценка студента по дисциплине учебного плана в национальной системе оценивания
18-20	Отлично
15-17	Хорошо
10-14	Удовлетворительно
1-9	Неудовлетворительно

5. Форма и средства (методы) проведения промежуточной аттестации

5.1. Промежуточный контроль: экзамен

Экзамен проводится в устной форме. Время, отведенное на подготовку вопросов экзамена, составляет 15 мин. По рейтинговой системе оценки, формы контроля оцениваются отдельно. Экзамен составляет от 0 до 20 баллов. Допуск к экзамену составляет 45 баллов.

Типовые оценочные средства.

Примерный перечень вопросов к экзамену:

- 1. Понятие нейрона. Схема нейрокомпьютера.
- 2. Обучение нейронной сети.
- 3. Технология обучения.
- 4. Способы представления. процесса обучения.
- 5. Алгоритм обучения однослойной нейронной сети.
- 6. Пример решения задачи классификации на основе нейронной сети.
- 7. Эволюция развития перцептронных алгоритмов обучения.
- 8. Эффективность аппарата нейросетей. Модели ассоциативной памяти.
- 9. Сети Хопфилда.

- 10. Алгоритм обратного распространения ошибки и его анализ.
- 11. Трудности алгоритма обратного распространения ошибки
- 12. Устойчивость сетей Хопфилда.
- 13. Применение сети Хопфилда к решению задач комбинаторной оптимизации. Сети Хопфилда.
 - 14. Прогнозирование с использованием нейросетей.
 - 15. Архитектура АПНС сети.
 - 16. Пример применения АПНС в задачах распознавания образов.
 - 17. Нечеткие нейронные сети. Преимущества аппарата нечетких нейронных сетей.
 - 18. Нечеткие элементы нейросетевых систем. Нечеткие нейроны.
 - 19. Классификация нейроимитаторов.
- 20. Программный комплекс NeuroIterator. Нейропакет BrainMaker 3.1 Professional. Пакет Matlab

Градация перевода рейтинговых баллов обучающихся в пятибалльную систему аттестационных оценок и систему аттестационных оценок ECTS.

Академический рейтинг обучающегося	Аттестационная оценка обучающегося по дисциплине учебного плана в национальной системе оценивания	Аттестационная оценка обучающегося по дисциплине учебного плана в системе ECTS
95-100	0	+ A (excellent)
80-94	Отлично	A (excellent)
75-79	V	+B (good)
70-74	Хорошо	B (good)
55-69	V	C (satisfactory)
50-54	Удовлетворительно	D (satisfactory)
45-49		E (satisfactory failed)
1-44	Неудовлетворительно	F (not rated)
0		N/A (not rated)

6. Практическая работа(практическая подготовка): проверка выполнения заданий по практической подготовке в профессиональной деятельности и самостоятельной работы на практических занятиях.

Практическое задание - это частично регламентированное задание по практической подготовке в профессиональной деятельности, имеющее алгоритмическое или нестандартное решение, позволяющее диагностировать умения, интегрировать знания различных научных областей в практическую подготовку связанную с профессиональной деятельности. Может выполняться в индивидуальном порядке или группой обучающихся.

Работа во время проведения практического занятия состоит из следующих элементов:

- консультирование обучающихся преподавателем с целью предоставления исчерпывающей информации, необходимой для самостоятельного выполнения предложенных преподавателем практических заданий и задач;
- самостоятельное выполнение практических заданий согласно обозначенной учебной программой тематики;
 - ознакомление с инструктивными материалами с целью осознания задач практического

занятия, техники безопасности при работе в аудитории.

Обработка, обобщение полученных результатов практической подготовки проводиться обучающимися самостоятельно или под руководством преподавателя (в зависимости от степени сложности поставленных задач).

6 . Примерные темы к курсовым работам (проектам)

Курсовая работа/проект - предусмотрена/не предусмотрена

7 .Оценка компетенций (в целом)

Оценка компетенций (в целом) осуществляется по итогам суммирования текущих результатов обучающегося и промежуточной аттестации.

В оценке освоения компетенций (в целом) учитывают: полноту знания учебного материала по теме, степень активности обучающегося на занятиях в семестре; логичность изложения материала; аргументированность ответа; уровень самостоятельного мышления, практической подготовки; умение связывать теоретические положения с практикой, в том числе и с будущей профессиональной деятельностью с промежуточной аттестации.