Документ подписан простой электронной подписью

Информациональное кажение высшего образования '«Московская фио: Кузнецова Эмилия Вания СБЕНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Должность: Исполнительный директор«РЕГИОНА ЛЬНЫЙ ИНСТИТУТ БИЗНЕСА И УПРАВЛЕНИЯ»

Дата подписания: 23.11.2025 16:18:17 Уникальный программный ключ:

01e176f1d70ae109e92d86b7d8f33ec82fbb87d6

Рассмотрено и одобрено на заседании Учебно-Методического совета Протокол \mathfrak{N} 1 от 23 августа 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ к рабочей программе дисциплины Методы оптимизации

Направление подготовки	09.03.03 Прикладная информатика
Направленность подготовки (профиль)	Прикладная информатика
Уровень программы	бакалавриат
Форма обучения	очно-заочная

Фонд оценочных средств текущей и промежуточной аттестации по дисциплине «Методы оптимизации»

Фонд оценочных средств является неотъемлемой частью рабочей программы дисциплины и основной образовательной программы.

Фонд оценочных средств представляет собой комплекс учебных заданий, предназначенных для измерения уровня достижений обучающимся установленных результатов обучения, и используется при проведении текущей и промежуточной аттестации (в период зачетно - экзаменационной сессии).

Цель Φ OC — установление соответствия уровня подготовки обучающихся на данном этапе обучения требованиям рабочей программы дисциплины.

Основными задачами ФОС по учебной дисциплине являются:

- контроль достижений целей реализации ОП формирование компетенций;
- контроль процесса приобретения обучающимся необходимых знаний, умений, навыков(владения/опыта деятельности) и уровня сформированности компетенций;
 - оценка достижений обучающегося;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование методов обучения в образовательном процессе.

1. Планируемые результаты обучения по дисциплине в рамках планируемых результатов освоения основной образовательной программы. Перечень компетенций в процессе освоения образовательной программы.

Дисциплина «Методы оптимизации» обеспечивает освоение следующих компетенций с учетом этапа освоения:

Код	
компетенции	Наименование компетенции
ОПК - 1	Способен применять естественнонаучные и общеинженерные знания, методы математического
	анализа и моделирования, теоретического и экспериментального исследования в
	профессиональной деятельности
ОПК - 6	
	Способен анализировать и разрабатывать организационно-технические и экономические
	процессы с применением методов системного анализа и математического моделирования

Раздел/тема	Краткое тематическое содержание /этапы формирования компетенции	Методы текущего контроля успеваемост и	Компетенции
Сущность		O,T	ОПК-1; ОПК-6
оптимизационных	Общая постановка		
методов и задач	оптимизационной задачи, различные		
	классы оптимизационных задач, их		
	особенности. Аналитические и		
	численные методы решения		
	оптимизационных задач. Примеры		
	постановок оптимизационных задач.		
	Использование оптимизационных		
	задач в математическом		
	моделировании.		

	Графический метод решения	
Основные классы оптимизационных задач в экономике	Методы исследования и моделирования социально экономических систем. Этапы экономико-математического моделирования. Классификация экономико-математических методов и моделей. Общая постановка задачи исследования операций. Принцип оптимальности в планировании и управлении. Классификация задач оптимального программирования. Решение оптимизационных задач с помощью информационных технологий. Задачи линейного программирования: Задачи о рентабельности производства, Задача о смесях, Задача о раскрое материалов, Задача о размещении заказа, Транспортная задача, Задача о коммивояжере, Распределение по должностям, Выбор портфеля ценных бумаг, Задача об использовании мощностей, Задача об использовании	ОПК-1; ОПК-6
Численные методы оптимизации	Методы оптимизации функции одной переменной. Метод деления отрезка пополам. Метод золотого сечения. Градиентный метод. Метод Ньютона. Методы оптимизации функции нескольких переменных. Производная по направлению и градиент. Выпуклые функции. Задача выпуклого программирования. Приближенное решение задач выпуклого программирования методом кусочно-линейной аппроксимации. Методы спуска. Приближенное решение задач выпуклого программирования градиентным методом. Понятие о параметрическом и стохастическом программировании. Решения задачи оптимизации с помощью прикладного ПО.	ОПК-1; ОПК-6

Сетевое планирование. Многокритериальная оптимизация.	Модели сетевого планирования и управления. Назначение и области применения сетевого планирования и управления. Сетевая модель и ее основные элементы. Порядок и правила построения сетевых графиков. Упорядочение сетевого графика. Понятие о пути. Временные параметры сетевых графиков. Сетевое планирование в условиях неопределенности. Коэффициент напряженности работы. Анализ и оптимизация сетевого графика. Оптимизация сетевого графика. Оптимизация сетевого графика методом «время—стоимость». Задачи многокритериальной оптимизации. Происхождение и постановка задачи многокритериальной оптимизации. Доминирование и оптимальность по		ОПК-1; ОПК-6
--	--	--	--------------

Соответствие уровней освоения компетенции планируемым результатам обучения и критериям их оценивания

Код	
компетенции	Наименование компетенции
ОПК - 1	Способен применять естественнонаучные и общеинженерные знания, методы математического
	анализа и моделирования, теоретического и экспериментального исследования в
	профессиональной деятельности

Показатель оценивания/индика	Критерии оценивания					
торы	2	3	4	5		
Знает	Не знает			Владеет полной		
	основные классы		Демонстриру	системой знаний		
	оптимизационных	Демонстрирует	ет знания	об основных		
	задач; примерах	только	основных	классах		
	практического	частичные	классов	оптимизационых		
	применения	знание основных	оптимизаци	задач; примерах		
	оптимизационных	классов	онных задач;	практического		
	задач;	оптимизационны	примерах	применения		
	аналитических и	х задач;	практического	оптимизационных		
	численных методах	примерах	применения	задач;		
	решения	практического	оптимизаци	аналитических и		
	оптимизационных	применения	онных задач;	численных методах		
	задач	оптимизацион	аналитическ	решения		
		ных задач;	их и	оптимизационных		
		аналитических и	численных	задач		
		численных	методах			
		методах решения	решения			
		оптимизацион	оптимизаци			
		ных задач	онных задач			

Показатель оценивания/индика	Критерии оценивания							
торы	2	3	4	5				
Умеет	Не умеет строить	Демонстрирует		Умеет на				
		только		практике строить				
	оптимизационных	частичное		модели				
		умение строить		оптимизационных				
		модели		задач для				
	ситуаций; находить			различных				
	аналитическое	ных задач для	Демонстриру	ситуаций; находить				
	решение для	различных	ет умение	аналитическое				
	F	ситуаций;	строить	решение для				
		находить	модели	оптимизационных				
	использовать	аналитическое	оптимизаци	задач;				
	полученные	решение для	онных задач	использовать				
	результаты для	оптимизацион	для различных	полученные				
		ных задач;	ситуаций;	результаты для				
	оптимальных	использовать	находить	принятия				
	решений; строить	полученные	аналитическое	оптимальных				
	математические	результаты для	решение для	решений; строить				
	модели объектов	принятия	оптимизаци	математические				
	профессиональной	оптимальных	онных задач;	модели объектов				
	деятельности	решений;	использоват ь	профессиональной				
		строить	полученные	деятельности				
		математические	результаты					
		модели	для принятия					
		объектов	оптимальны х					
		профессиональ	решений;					
		ной	строить матем					
		деятельности	атические					
			модели					
			объектов					
			профессиона					
			льной					
D.	**		деятельности	70				
Владеет	Не владеет	Демонстрирует	Демонстриру	Владеет навыками				
	навыками	только	ет владение	<u> </u>				
	моделирования	частичное	навыками	конфликтных				
	конфликтных	владение	моделирован	ситуаций				
	ситуаций	навыками	ия	распределения				
	распределения	моделирования	конфликтных	ограниченных				
	ограниченных	конфликтных	ситуаций	ресурсов;				
	ресурсов; навыками	· •	распределения	навыками				
		распределения	ограниченных					
		ограниченных	ресурсов;					
		ресурсов; навыками	навыками					
		Haddinalvili						
	1							

Код		Наименование
компетенц	ии	компетенции

ОПК - 6	Способен	анал	изировать	И	разрабатывать	организ	вационно-техн	нические	И
	экономиче	ские	процессы	c	применением	методов	системного	анализа	И
	математич	еског	о моделиро	ван	ия;				

Показатель	Критерии оценивания						
оценивания/индика		критерии от	ценивания				
торы	2	3	4	5			
Знает	программирования (задача о наилучшем использовании ресурсов, о выборе оптимальных технологий, задача раскроя, модели матричных игр и др.);	Демонстрирует только частичные знания некоторых математически х моделей линейного программирова ния (задача о наилучшем использовании ресурсов, о выборе оптимальных технологий, задача раскроя, модели матричных игр и др.);	знания некоторых математических моделей линейного программирова ния (задача о наилучшем использовании ресурсов, о выборе оптимальных	Владеет полной системой знаний о некоторых математических моделях линейного программирования (задача о наилучшем использовании ресурсов, о выборе оптимальных технологий, задача раскроя, модели матричных игр и др.);			
Умеет	принятия решений в сложных ситуациях в условиях неопределенности	моделей для	проводить анализ математически х моделей для задач принятия решений в сложных	Умеет на практике проводить анализ математических моделей для задач принятия решений в сложных ситуациях в условиях неопределеннос ти			
Владеет	Не владеет основными методами сетевого планирования и управления	Демонстрирует только частичное владение основными методами сетевого планирования и управления	Демонстрирует владение основными методами сетевого планирования и управления	Владеет основными методами сетевого планирования и управления			

3. Фонд оценочных средств и материалы текущего контроля успеваемости обучающихся и промежуточной аттестации по дисциплине

3.1. В ходе реализации дисциплины «Методы оптимизации» используются следующие формы текущего контроля успеваемости обучающихся:

опрос, тестирование и т.д.

- 3.2. Преподаватель при текущем контроле успеваемости, оценивает уровень подготовленности обучающихся к занятию по следующим показателям:
 - устные (письменные) ответы на вопросы преподавателя по теме занятия;
 - количество правильных ответов при тестировании;
- по сформированности собственных суждений основанных на значимых фактах и практических результатах отраженных в реферате, эссе;
 - аргументированности, актуальности, новизне содержания доклада;
 - по точному выполнению целей и задач контрольной работы.

Детализация баллов и критерии оценки текущего контроля успеваемости утверждается на заседании кафедры.

3.2.1. Вопросы для подготовки к опросу по всем изучаемым тема дисциплины:

Тема 1. Сущность оптимизационных методов и задач.

- 1. Сформулируйте понятие «оптимизации». Приведите примеры сфер деятельности, где можно использовать методы оптимизации.
- 2. Когда были впервые заложены математические основы оптимизации? Причины, обусловившие развитие методов оптимизации в XX веке.
- 3. Постановка задачи оптимизации. Условия необходимые для постановки задачи оптимизации.
 - 4. Сущность системного подхода при постановке задачи оптимизации.
 - 5. Как определяется целевая функция?
- 6. Может ли целевая функция не зависеть от одной или двух из трех переменных задачи оптимизации?

Тема 2. Основные классы оптимизационных задач в экономике

- 1. Как определяется допустимое решение задачи оптимизации?
- 2. Что называется оптимальным решением задачи оптимизации?
- 3. Сущность и значимость экономико-математического моделирования.
- 4. Этапы экономико-математического моделирования.
- 5. Область применения экономико-математических моделей.
- 6. Для задачи составления плана производства описать переменные и параметры задачи.
- 7. Для задачи составления плана производства описать основные экономические условия.
 - 8. Для задачи составления плана производства сформулировать ограничения задачи.
- 9. Что принимается в качестве целевой функции в задаче составления плана производства?
- 10. Дать экономический смысл точного равенства в ограничении задачи составления плана производства.

Тема 3. Численные методы оптимизации

- 1. Метод искусственного базиса.
- 2. Виды двойственных задач.
- 3. Теоремы двойственности.
- 4. Двойственный симплексный метод.

Тема 4. Сетевое планирование.

Многокритериальная оптимизация.

- 1. Метод идеальной точки. Метод приоритетов.
- 2. Метод последовательных уступок.
- 3. Метод свертки.
- 4. Метод STEM.
- 5. Методы многокритериального анализа альтернатив для слабоструктурированных проблем.

Устный (письменный) опрос проводится в течение установленного времени преподавателем. Опрашиваются все обучающиеся группы. За опрос выставляется оценка до 10 баллов. Набранные баллы являются рейтинг-баллами.

Рейтинг-баллы	Аттестационная оценка обучающегося по дисциплине учебного плана в национальной системе оценивания
8-10	онрилто
6-7	хорошо
4-5	удовлетворительно
0-3	неудовлетворительно

При оценивании учитывается:

- 1. Целостность, правильность и полнота ответов
- 2. В ответе приводятся примеры из практики, даты, Ф.И.О. авторов
- 3. Применяются профессиональные термины и определения

Процедура оценки опроса:

- 1. Если ответ удовлетворяет 3-м условиям 8-10 баллов.
- 2. Если ответ удовлетворяет 2-м условиям 6-7 баллов.
- 3. Если ответ удовлетворяет 1-муусловию 4-5 баллов.
- 4. Если ответ не удовлетворяет ни одному условию 0-3

3.2.2. Тестовые задания для проведения тестирования:

- 1. Задача математического программирования включает в себя три основных компонента:
- 1) кривую спроса, систему ограничений, матрицу затрат;
- 2) кривую спроса, целевую функцию, переменные;
- 3) переменные, систему ограничений, целевую функцию;
- 4) систему ограничений, матрицу затрат, балансовые соотношения.
- 2. Из каких соотношений состоит каноническая система ограничений?
- 1) только из уравнений;
- 2) только из неравенств;
- 3) из уравнений и неравенств;
- 4) либо только из уравнений, либо только из неравенств.
- 3. Областью допустимых решений называется
- 1) Множество всех допустимых решений задачи;
- 2) Множество допустимых решений задачи, при которых значение целевой функции положительно;
- 3) Множество допустимых решений задачи, при которых значение целевой функции отрицательно;
- 4) Множество допустимых решений задачи, при которых значение целевой функции равно нулю.
- 4. Графический метод решения задач линейного программирования предполагает построение:
- 1) многоугольника, вектора нормали, линий уровня;
- 2) окружности, вектора нормали, линий уровня;
- 3) многоугольника, биссектрисы, перпендикуляров;
- 4) окружности, биссектрисы, перпендикуляров.
- 5. Выберите верное утверждение о понятиях графического метода решения задач линейного программирования
- 1) любая линия уровня является опорной прямой;
- 2) любая опорная прямая является линией уровня;

- 3) линия уровня и опорная прямая это одно и то же понятие;
- 4) линия уровня и опорная прямая независимые понятия.
- 6. Симплексная таблица включает в себя
- 1) коэффициенты при переменных;
- 2) свободные коэффициенты;
- 3) коэффициенты при переменных целевой функции, взятые с противоположными знаками;
- 4) все указанные элементы.
- 7. Для пересчёта симплекс-таблицы используется правило
- 1) треугольника;
- 2) прямоугольника;
- 3) параллелограмма;
- 4) буравчика.
- 8. Один из методов для составления первого плана в транспортной задаче называется методом...
- 1) экстремального элемента;
- 2) максимального элемента;
- 3) средневзвешенного элемента;
- 4) минимального элемента.
- 9. Областью решений неравенства $4x_1-3x_1 < 12$ является
- 1) первая координатная четверть;
- 2) полуплоскость выше прямой 4х1-3х2-12=0;
- 3) полуплоскость ниже прямой 4х1-3х2-12=0;
- 4) четвёртая координатная четверть.
- 10. Даны векторы запасов $S=\{250,300,450\}$ и потребностей $P=\{200,150,350,300\}$. Предположим, что задана некоторая матрица затрат. В этом случае транспортная задача является
- 1) закрытой
- 2) открытой
- 3) однородной
- 4) неоднородной
- 11. На вопрос «как это происходит» отвечают модели.
 - 1) нормативные
 - 2) дескриптивные
 - 3) детерминированные
 - 12. Совокупность точек оптимальных технологий на графике называется...
 - 1) наилучшая технология
 - 2) закон убывающей отдачи
 - 3) производственная функция
 - 13. Положительная первая производная производственной функции в экономике называется...
 - 1) предельный продукт
 - 2) оптимальная технология
 - 3) аксиома производителя
 - 14. Отрицательность вторых частных производных производственной функции в экономике называется......
 - 1) увеличение отдачи
 - 2) увеличение предельного
 - 3)) закон убывающей отдачи технологии продукта
 - 15. Производственная функция Кобба-Дугласа имеет параметра:
 - 1) 2
 - 2) 3
 - 3) 1
 - 16. По характеру отражения причинно-следственных связей экономические модели делятся на...
 - 1) статические и динамические
 - 2) макроэкономические и
 - 3) детерминированные и стохастические микроэкономические

- 17) Смысл показателя степени у параметра «труд» в функции Кобба Дугласа...
- 1) производительность труда
- 2) эластичность выпуска продукции по фондам
- 3) эластичность выпуска продукции по труду
- 18 Способ переработки ресурсов в готовую продукцию называется...
- 1) производственная функция
- 2)) технология
- 3) выпуск продукции
- 19 Отношение объёма произведённого продукта к количеству затраченного труда называется
- 1) средняя производительность
- 2) предельная производительность
- 3) средняя фондоотдача труда производительность труда
- 20 Экономический смысл показателя степени у параметра «фонды» в функции Кобба-Дугласа.,
- 1) средняя фондоотдача
- 2) предельная фондоотдача
- 3) эластичность выпуска по фондам

За выполнение контрольного теста выставляется оценка до 20 баллов. Набранные баллы являются рейтинг-баллами.

Параметры оценивания:

- 0-2 ошибки: «отлично» (18-20 баллов);
- 3-4 ошибки: «хорошо» (15-17 баллов);
- 5-6 ошибки: «удовлетворительно» (10-14 баллов)
- 7 и более ошибок: «неудовлетворительно» (1-9 баллов)

Рейтинг-баллы	Аттестационная оценка обучающегося по дисциплине учебного плана в национальной системе оценивания
18-20	Отлично
15-17	Хорошо
10-14	Удовлетворительно
1-9	Неудовлетворительно

4. Форма и средства (методы) проведения промежуточной аттестации

4.1. Промежуточный контроль: экзамен (рейтинговая система)

экзамен проводится в устной форме. Время, отведенное на подготовку вопросов экзамен, составляет 30 мин. По рейтинговой системе оценки, формы контроля оцениваются отдельно. экзамен составляет от 0 до 20 баллов. Допуск к экзамену составляет 45 баллов.

Вопросы к экзамену

- 1. Выпуклые множества и свойства ОДР ЗЛП
- 2. Опорное решение ЗЛП и его нахождение
- 3. Симплексный метод решения ЗЛП
- 4. Переход от одного опорного решения к другому и оценки разложений столбцов по базису.
- 5. Признак возможности улучшения решения и другие признаки.
- 6. Признак достижения оптимального решения и другие признаки.
- 7. Метод искусственного базиса.
- 8. Теория двойственности: виды задач.
- 9. Первая теорема двойственности.

- 10. Вторая теорема двойственности.
- 11. Транспортная задача: необходимое и достаточное условие существования решения.
- 12. Транспортная задача: ранг системы ограничений.
- 13. Транспортная задача: опорное решение и цикл.
- 14. Транспортная задача: методы построения начального опорного решения.
- 15. Транспортная задача: переход от одного опорного решения к другому.
- 16. Транспортная задача: метод потенциалов.
- 17. Целочисленное программирование: метод Гомори и метод ветвей и границ.
- 18. Безусловный экстремум для функций одной и многих переменных.
- 19. Условный экстремум, метод множителей Лагранжа
- 20. Выпуклое программирование: выпуклая функция и её свойства.
- 21. Выпуклое программирование: теорема Куна-Таккера.
- 22. Вариации функции и функционала.
- 23. Постановка задачи вариационного исчисления.
- 24. Основная лемма вариационного исчисления, лемма Лагранжа.
- 25. Необходимое условие экстремума функционала, уравнение Эйлера.
- 26. Безусловная оптимизация: метод покоординатного спуска.
- 27. Безусловная оптимизация: градиентные методы.
- **5. Практическая работа (практическая подготовка):** проверка выполнения заданий по практической подготовке в профессиональной деятельности и самостоятельной работы на практических занятиях.

Практическое задание — это частично регламентированное задание **по практической подготовке в профессиональной деятельности**, имеющее алгоритмическое или нестандартное решение, позволяющее диагностировать умения, интегрировать знания различных научных областей в практическую подготовку связанную с профессиональной деятельности. Может выполняться в индивидуальном порядке или группой обучающихся.

Работа во время проведения практического занятия состоит из следующих элементов:

- консультирование обучающихся преподавателем с целью предоставления исчерпывающей информации, необходимой для самостоятельного выполнения предложенных преподавателем практических заданий и задач;
- самостоятельное выполнение практических заданий согласно обозначенной учебной программой тематики;
- ознакомление с инструктивными материалами с целью осознания задач практического занятия, техники безопасности при работе в аудитории.

Обработка, обобщение полученных результатов практической подготовки проводиться обучающимися самостоятельно или под руководством преподавателя (в зависимости от степени сложности поставленных задач).

6. Примерные темы к курсовым работам (проектам)

Курсовая работа/проект – предусмотрена/не предусмотрена

7. Оценка компетенций (в целом)

Оценка компетенций (в целом) осуществляется по итогам суммирования текущих результатов обучающегося и промежуточной аттестации.

В оценке освоения компетенций (в целом) учитывают: полноту знания учебного материала по теме, степень активности обучающегося на занятиях в семестре; логичность изложения материала; аргументированность ответа; уровень самостоятельного мышления, практической подготовки; умение связывать теоретические положения с практикой, в том числе и с будущей профессиональной деятельностью с промежуточной аттестации.