Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Кузнецова Эмили РАСТНОЕ ОБРАЗОВА ТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Должность: Исполнительный дирек ВЕГИОНАЛЬНЫЙ ИНСТИТУТ БИЗНЕСА И УПРАВЛЕНИЯ»

Дата подписания: 23.11.2025 16:18:17 Уникальный программный ключ:

01e176f1d70ae109e92d86b7d8f33ec82fbb87d6

Рассмотрено и одобрено на заседании Учебно-Методического совета Протокол № 1 от 23 августа 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ к рабочей программе

дисциплины «Методы машинного обучения»

09.03.03 Прикладная информатика Направление подготовки Направленность Прикладная информатика подготовки (профиль) Уровень программы бакалавриат Форма обучения очно-заочная

Фонд оценочных средств текущей и промежуточной аттестации по дисциплине «Методы машинного обучения»

Фонд оценочных средств является неотъемлемой частью рабочей программы дисциплины и основной образовательной программы.

Фонд оценочных средств представляет собой комплекс учебных заданий, предназначенных для измерения уровня достижений обучающимся установленных результатов обучения, и используется при проведении текущей и промежуточной аттестации (в период зачетно-экзаменационной сессии).

Цель ФОС – установление соответствия уровня подготовки обучающихся на данном этапе обучения требованиям рабочей программы дисциплины.

Основными задачами ФОС по учебной дисциплине являются:

- контроль достижений целей реализации ОП формирование компетенций;
- контроль процесса приобретения обучающимся необходимых знаний, умений, навыков(владения/опыта деятельности) и уровня сформированности компетенций;
 - оценка достижений обучающегося;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование методов обучения в образовательном процессе.

1 . Планируемые результаты обучения по дисциплине в рамках планируемых результатов освоения основной образовательной программы. Перечень компетенций в процессе освоения образовательной программы.

Дисциплина «Методы машинного обучения» обеспечивает освоение следующих компетенций с учетом этапа освоения:

Код	
компетенции	Наименование компетенции
ПК-10	Способен применять системный подход и математические методы в
1111 10	формализации решения прикладных задач

Раздел/тема	Краткое тематическое содержание /этапы формирования компетенции		Комп етенци и
Понятийный аппарат и методологическая база методов машинного обучения.	 Тема1. Основные понятия и определения в методах машинного обучения. Тема 2. История развития методов машинного обучения. Тема 3.Методологическая база методов машинного обучения. 	O	ПК 10
Основные технологии, испо	Тема 1.Типы и способы представления методов маш	O	ПК

	L		10
пьзуемые в методах инного обучения			10
машинного обучения.	Тема 2. Базовые алгоритмы решения задач		
	машинного обучения		
	Тема3.Основные программно-		
	Информационные ресурсы методов машинного		
	обучения		
Анализ многомерных		O	ПК10
данных. Корреляционный и	Тема1. Анализмногомерных данных.		
причинно-следственные	Корреляционные и причинно-следственные связи.	P	
связи	Корреляция признаков и структура данных.		
	Тема 2. Регрессия. Метод наименьших квадратов.		
	Теорема Гаусса-Маркова. Обобщенный метод		
	наименьших квадратов.		
	Тема 3. Многомерная регрессия.		
	Особенности построения регрессии по многомерны		
	м данным. Множественная линейная регрессия, ее		
	преимущества и недостатки.		
	Тема 4. Кластеризация. Кластеризация как		
	классификация без учителя. Меры сходства и меры		
	различия образов. Метод К средних.		
	Метод ISODATA. Метод FOREL.		
Графовые методы.	Тема 1. Графовые методы.	О	ПК10
н рафовые методы. Нейронные сети.		O	111110
пеиронные сети.	Иерархическая кластеризация. Агломеративные и		
	разделяющие алгоритмы кластеризации.		
	Дендрограммы.		
	Тема2. Нейронные сети. Предпосылки		
	возникновения нейросетей. Перцептрон		
	Розенблатта. Многослойный перцептрон. Карты		
	Кохонена. Сети Хопфилда.		
	Методы обучения нейросетей. Метод опорных		
	векторов.		
	Тема 3. Машинное обучение и теория Вапника-		
	Червоненкиса.		
	Принцип структурной минимизации риска. Метод		
	опорных векторов. Политика назначения штрафов.		

2 .Cоответствие уровня освоения компетенции планируемым результатам обучения и критериям их оценивания

Код компетенции	Наименование компетенции
ПК-10	Способен применять системный подход и математические методы в формализации
	решения прикладных задач

П	Критерии оценивания				
Показатель оценивания	1	2	3	4	5

	ı		1	ı	I
	-	Студент	Студент		Студент
		демонстрирует	демонстрирует	демонстрирует	демонстрирует
	ировал	небольшое	частичное	значительное	полное знание
Знает базовые положения	отсутствие	понимание	понимание	знание заданий.	заданий. Все
фундаментальных разделов	знаний.	заданий. У	заданий.		требования,
системного анализа и		студента нет	Большинство	предъявляемые к	предъявляемые к
математики в объеме,		ответа.	требований,	заданию	заданию
необходимом для обработки			предъявляемы х	выполнены.	выполнены.
информации и анализа			к заданию		
данных в прикладной			выполнены.		
области; принципы и методы					
проведения исследований в					
области информационных					
систем и технологий;					
техники планирования и					
проведения вычислительного					
эксперимента					
•	Студент	Студент	Студент	Студент	Студент
		демонстрирует	демонстрирует	демонстрирует	демонстрирует
Умеет формулировать и	-	неумения	частичное		полное умение
	отсутствие	выполнять	умение	знание заданий.	выполнений
результаты в прикладных	умений.	задания.	выполнений	Все требования,	заданий. Все
областях; применять	ľ	,	заданий.		требования,
численные методы для			Большинство	заданию	предъявляемые к
решения прикладных задач;			требований,	выполнены.	заданию
программно реализовать			предъявляемы х		выполнены.
вычислительный			к заданию		
эксперимент посредством			выполнены.		
языков программирования					
или с использованием					
специализированных пакетов					
прикладных программ;					
разрабатывать алгоритмы					
решения конкретных задач.					
г	Проявляется	У студента не	В целом	В целом	Успешное и
Владеет навыками		•	успешное, но не	,	систематическое
постановки задачи;			систематическо	ľ.	применение
навыками работы с	полное	е	е применение	отдельные	навыков
библиографическими		с компетенции,	навыков	пробелы	TIMDDIKOD
источниками информации;	навыков.	проявляется	Парыков	применение	
навыками решения	Habbikob.	недостаточно		навыков	
поставленных задач в		сть навыков.		IIMDDIKOD	
предметной области в рамках		CID HUDDINUD.			
1					
выбранного профиля.					

3. Фонд оценочных средств и материалы текущего контроля успеваемости обучающихся и промежуточной аттестации по дисциплине

- 3.1. В ходе реализации дисциплины «Методы машинного обучения» используются следующие формы текущего контроля успеваемости обучающихся: опрос, реферат, и т.д.
- 3.2. Преподаватель при текущем контроле успеваемости, оценивает уровень подготовленности обучающихся к занятию по следующим показателям:
 - устные (письменные) ответы на вопросы преподавателя по теме занятия;
 - количество правильных ответов при тестировании;
- по сформированности собственных суждений основанных на значимых фактах и практических результатах отраженных в реферате, эссе;

- аргументированности, актуальности, новизне содержания доклада;
- по точному выполнению целей и задач контрольной работы.

Детализация баллов и критерии оценки текущего контроля успеваемости утверждается на заседании кафедры.

- .2.1. Вопросы для подготовки к опросу по всем изучаемым тема дисциплины:

- 1. Основные понятия. Определение предмета машинного обучения. Примеры задачи областей приложения. Образы и признаки.
 - 2. Типы задач предсказания. Регрессия. Таксономия. Классификация. Типы ошибок классификации. Обобщающая способность классификатора.
- 3. Принцип минимизации эмпирического риска. Недообучение.

Переобучение. Статистический, нейросетевой и структурно - лигвистический подходы к распознаванию образов.

- 4. Структура типичной системы распознавания образов. Цикл построения системы распознавания образов.
- 5. Классификация. Общие принципы. Этапы классификации. Алгоритмы обучения классификаторов с учителем и без учителя. Дискриминантный анализ. Геометрическая интерпретация задачи классификации.
- 6. Проективный подход. Метрики в пространстве признаков. Евклидово расстояние. Расстояние Махалонобиса. Ошибки первого и второго рода. Чувствительность и избирательность.
- 7. Кривая мощности критерия классификации. ROC- кривые. Проверка классификатора. Проверка тестовой выборкой. Перекрестная проверка. Оценка информативности признаков.
- 8. Основные методы машинного обучения. Байесовская классификация. Условная вероятность. Формула полной вероятности. Формула Байеса. Статистическое распознавание образов. Задача классификации спама. Критерий отношения правдоподобия. Байесовский риск. Критерий Байеса.
- 9. Критерий максимального правдоподобия. Многоклассовые байесовские классификаторы. Байесовские классификаторы для нормально распределенных классов при различной структуре матрицы ковариации
- 10. Оценивание функций распределения. Параметрическое оценивание. Метод максимума правдоподобия. Байесовское оценивание. Непараметрическое оценивание. Распознавание рукописных цифр с помощью наивного байесовского
- 11. Деревья решений. Основные понятия. Классы решаемых задач: описание данных, классификация, регрессия. Общий алгоритм построения дерева решений. Критерии выбора наилучшего атрибута: прирост информации, относительный прирост информации, индекс Гини.
- 12. Правила остановки разбиения дерева. Обрезание дерева. Алгоритм ID3. Переобучение деревьев решений. Обработка непрерывных атрибутов. Обучение на данных с пропусками. Программное обеспечение для построения деревьев решений. Распознавание спамовых писем с помощью деревьев решений
- 13. Анализ многомерных данных. Корреляционные и причинно следственные связи. Корреляция признаков и структура данных.
- 14. Метод главных компонент как декомпозиция матрицы данных. Матрица счетов. Матрица нагрузок. Матрица ошибок. Объясненная и остаточная вариация в данных. Графическая интерпретация метода главных компонент. Критерии выбора количества главных компонент. Понижение размерности признакового пространства методом главных компонент.
 - 15. Регрессия. Метод наименьших квадратов. Теорема Гаусса-

Маркова. Обобщенный метод наименьших квадратов. Рекурсивный метод наименьших квадратов. Анализ регрессионных остатков.

- 16. Многомерная регрессия. Особенности построения регрессии по многомерны м данным. Множественная линейная регрессия, ее преимущества и недостатки.
- 17. Кластеризация. Кластеризация как классификация без учителя. Меры сходства и меры различия образов. Метод К средних. Метод ISODATA. Метод FOREL.
- 18. Графовые методы. Иерархическая кластеризация. Агломеративные и разделяющие алгоритмы кластеризации. Дендрограммы.
- 19. Нейронные сети. Предпосылки возникновения нейросетей. Перцептрон Розенблатта. Многослойный перцептрон. Карты Кохонена. СетиХопфилда. Методы обучения нейросетей. Метод опорных векторов.
- 20. Машинное обучение и теория Вапника -Червоненкиса. Принцип структурной минимизации риска. Метод опорных векторов. Политика назначения штрафов.

Рейтинг-баллы	Аттестационная оценка обучающегося по дисциплине учебного плана в национальной системе оценивания
8-10	отлично
6-7	хорошо
4-5	удовлетворительно
0-3	неудовлетворительно

Устный (письменный) опрос проводится в течение установленного времени преподавателем. Опрашиваются все обучающиеся группы. За опрос выставляется оценка до 10 баллов. Набранные баллы являются рейтинг - баллами.

При оценивании учитывается:

- 1. Целостность, правильность и полнота ответов
- 2. В ответе приводятся примеры из практики, даты, Ф.И.О. авторов
- 3. Применяются профессиональные термины и определения

Процедура оценки опроса:

- 1. Если ответ удовлетворяет 3-м условиям 8-10 баллов.
- 2. Если ответ удовлетворяет 2-м условиям -6-7 баллов.
- 3. Если ответ удовлетворяет 1-муусловию 4-5 баллов.
- 4. Если ответ не удовлетворяет ни одному условию -0-3

3.2.2. Темы рефератов:

Реферат — форма научно-исследовательской деятельности, направленная на развитие научного мышления, на формирование познавательной деятельности по дисциплине через комплекс взаимосвязанных методов исследования, на самообразование и творческую деятельность. Используя ЭИОС ММА, включающей в себя электронные информационные ресурсы, электронные образовательные ресурсы, базы данных, ЭБС, выделять значимые и актуальные положения, противоположные мнения с обоснованием собственной точки зрения.

Общий список тем рефератов и эссе

1. Работа с типами данных в языке Python.

- 2. Введение в массивы библиотеки NumPy.
- 3. Выполнение вычислений над массивами библиотеки NumPy.
- 4. Операции над данными в библиотеке Pandas.
- 5. Визуализация с помощью библиотеки Matplotlib.
- 6. Библиотека Scikit-Learn.
- 7. Смеси Гауссовых распределений.
- 8. Ядерная оценка плотности распределения.
- 9. Метод опорных векторов. Оптимальная разделяющая гиперплоскость.
- 10. Случаи линейной разделимости и отсутствия линейной разделимости. Кусочно-линейная функция потерь.
 - 11. Задача квадратичного программирования и двойственная задача.
 - 12. Понятие опорных векторов. Линейные методы классификации.
- 13. Градиентные методы. Линейный классификатор, связь с методом максимума правдоподобия.
- 14. Метод стохастического градиента и частные случаи: адаптивный линейный элемент ADALINE, персептрон Розенблатта, правило Хэбба.
- 15. Метрические методы классификации. Метод ближайших соседей и его обобщения.
 - 16. Постановка задач обучения по прецедентам.
- 17. Типы задач: классификация, регрессия, прогнозирование, кластеризация. Примеры прикладных задач.
- 18. Основные понятия: модель алгоритмов, метод обучения, функция потерь и функционал качества.
- 19. Методика экспериментального исследования и сравнения алгоритмов на модельных и реальных данных.
 - 20. Полигон алгоритмов в классификации.
 - 21. CRISP-DM —

Межотраслевой стандарт ведения проектов интеллектуального анализа данных.

- 22. Понятие логической закономерности. Решающие списки и деревья. Объединение в решающие леса.
- 23. Сингулярное разложение, метод главных компонент.
- 24. Наивная байесовская классификация.
- 25. Машинное обучение с учителем и обучение без учителя.

Критерии оценки:

- 1. Выполнение задания в срок. Сформулированы предмет анализа или исходные тезисы.
- 2. Отражены суждения и оценки, основанные на значимых фактах и практических результатах.
 - 3. Использованы электронные информационные ресурсы, базы данных, ЭБС

Процедура оценки реферата, эссе:

- 1. Если ответ удовлетворяет 3-м условиям 18-20 баллов.
- 2. Если ответ удовлетворяет 2-м условиям 15-17 баллов.
- 3. Если ответ удовлетворяет 1-му условию 10-14 баллов.
- 4. Если ответ не удовлетворяет ни одному условию 1-9 баллов.

Рейтинг- баллы	Аттестационная оценка обучающегося по
	дисциплине учебного плана в национальной системе
	оценивания

18-20	Отлично
15-17	Хорошо
10-14	Удовлетворительно
1-9	Неудовлетворительно

4. Форма и средства (методы) проведения промежуточной аттестации

4.1. Промежуточный контроль: экзамен (рейтинговая система)

Экзамен проводится в устной форме. Время, отведенное на подготовку вопросов экзамена, составляет 15 мин. По рейтинговой системе оценки, формы контроля оцениваются отдельно. Экзамен составляет от 0 до 20 баллов. Допуск к экзамену составляет 45 баллов.

Типовые оценочные средства.

Примерный перечень вопросов к экзамену:

- 1. Основные понятия и определения в методах машинного обучения.
- 2. История развития методов машинного обучения.
- 3. Методологическая база методов машинного обучения.
- 4. Типы и способы представления методов машинного обучения
- 5. Базовые алгоритмы решения задач машинного обучения
- 6. Основные программно- информационные ресурсы методов машинного обучения
- 7. Анализ многомерных данных.
- 8. Корреляционные и причинно-следственные связи.
- 9. Корреляция признаков и структура данных.
- 10. Регрессия. Метод наименьших квадратов.
- 11. Теорема Гаусса-Маркова.
- 12. Обобщенный метод наименьших квадратов.
- 13. Многомерная регрессия.
- 14. Особенности построения регрессии по многомерным данным.
- 15. Множественная линейная регрессия, ее преимущества и недостатки.
- 16. Кластеризация.
- 17. Кластеризация как классификация без учителя.
- 18. Меры сходства и меры различия образов.
- 19. Метод К средних.
- 20. Метод ISODATA.
- 21. Meтод FOREL.
- 22. Графовые методы.
- 23. Иерархическая кластеризация.
- 24. Агломеративные и разделяющие алгоритмы кластеризации.
- 25. Дендрограммы.
- 26. Нейронные сети. Предпосылки возникновения нейросетей.
- 27. Перцептрон Розенблатта.
- 28. Многослойный перцептрон.
- 29. Карты Кохонена.
- 30. Сети Хопфилда.
- 31. Методы обучения нейросетей.
- 32. Метод опорных векторов.
- 33. Машинное обучение и теория Вапника-Червоненкиса.
- 34. Принцип структурной минимизации риска.
- 35. Метод опорных векторов.
- 36. Политика назначения штрафов.

Градация перевода рейтинговых баллов обучающихся в пятибалльную систему аттестационных оценок и систему аттестационных оценок ECTS.

Академический рейтинг обучающегося	Аттестационная оценка обучающегося по дисциплине учебного плана в национальной системе оценивания	Аттестационная оценка обучающегося по дисциплине учебного плана в системе ECTS
95-100	Отлично	+ A (excellent)
80-94	Оплично	A (excellent)
75-79	V	+B (good)
70-74	Хорошо	B (good)
55-69	V	C (satisfactory)
50-54	Удовлетворительно	D (satisfactory)
45-49		E (satisfactory failed)
1-44	Неудовлетворительно	F (not rated)
0		N/A (not rated)

5. Практическая работа(практическая подготовка): проверка выполнения заданий по практической подготовке в профессиональной деятельности и самостоятельной работы на практических занятиях.

Практическое задание — это частично регламентированное задание по практической подготовке в профессиональной деятельности, имеющее алгоритмическое или нестандартное решение, позволяющее диагностировать умения, интегрировать знания различных научных областей в практическую подготовку связанную с профессиональной деятельности. Может выполняться в индивидуальном порядке или группой обучающихся.

Работа во время проведения практического занятия состоит из следующих элементов:

- консультирование обучающихся преподавателем с целью предоставления исчерпывающей информации, необходимой для самостоятельного выполнения предложенных преподавателем практических заданий и задач;
- самостоятельное выполнение практических заданий согласно обозначенной учебной программой тематики;
- ознакомление с инструктивными материалами с целью осознания задач практического занятия, техники безопасности при работе в аудитории.

Обработка, обобщение полученных результатов практической подготовки проводиться обучающимися самостоятельно или под руководством преподавателя (в зависимости от степени сложности поставленных задач).

6 . Примерные темы к курсовым работам (проектам)

Курсовая работа/проект – предусмотрена/не предусмотрена

7 .Оценка компетенций (в целом)

Оценка компетенций (в целом) осуществляется по итогам суммирования текущих результатов обучающегося и промежуточной аттестации.

В оценке освоения компетенций (в целом) учитывают: полноту знания учебного материала по теме, степень активности обучающегося на занятиях в семестре; логичность

изложения материала; аргументированность ответа; уровень самостоятельного мышления, практической подготовки; умение связывать теоретические положения с практикой, в том числе и с будущей профессиональной деятельностью с промежуточной аттестации.